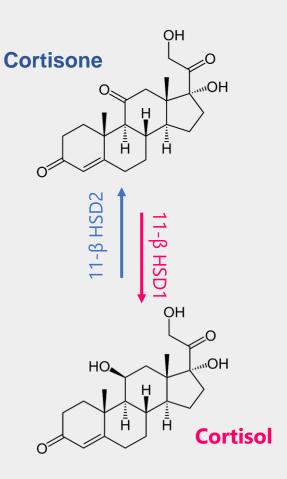
MODIFIED MAGNETIC-BASED SOLVENT ASSISTED DISPERSIVE SOLID-PHASE **EXTRACTION: APPLICATION TO THE DETERMINATION OF CORTISOL AND CORTISONE IN HUMAN SALIVA**

José Grau*, Juan L. Benedé, Alberto Chisvert, Amparo Salvador

VNIVERSITAT DÖVALÈNCIA


GICAPC Group, Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia *email: jose.grau-escribano@uv.es

INTRODUCTION

AIM

To develop a method employing a modification of the Magnetic-based Solvent Assisted Dispersive Solid-Phase Extraction (M-SA-DSPE) for the determination of **cortisol** and **cortisone** in saliva

- In this modification, a magnetic sorbent material is quickly dispersed in the sample with a disperser solvent, analogously to dispersive liquid-liquid microextraction (DLLME)
- No external agitators (i.e. vortex, ultrasounds etc.) are needed
- After a small extraction time, the magnetic material is easily retrieved by means of an external magnet
- Finally, analytes are **desorbed** in a small volume of organic solvent and measured by **LC-MS/MS**
- Analysis of **salivary cortisol** has gained interest in recent years due to its good correlation with **serum cortisol** and the relatively no-invasiveness of saliva sampling
- Abnormal levels of salivary cortisol can be an indicator of Cushing syndrome, hypertension and sepsis, among others
- Moreover, simultaneous determination of cortisol and cortisone can be a good indicator about a malfunction in the parotid gland
- In this work, a **reversed phase polymer** (Strata XTM-RP) embedded **with CoFe₂O₄ magnetic nanoparticles** (MNPs) is used as magnetic sorbent

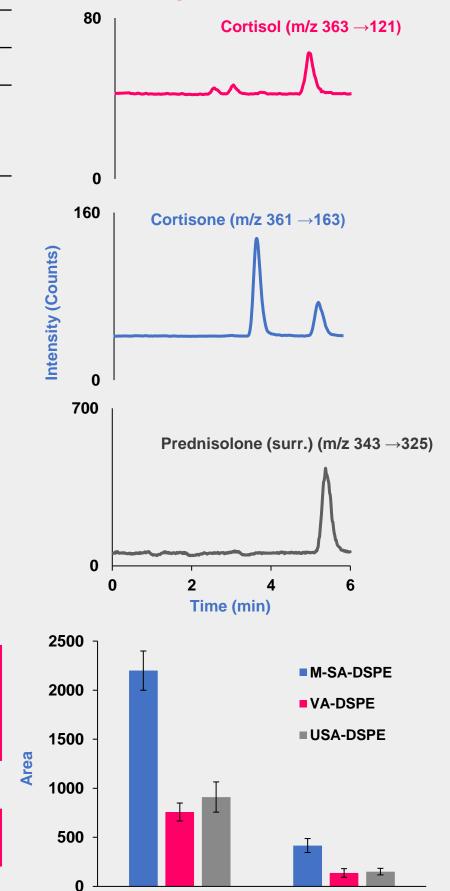
RESULTS AND DISCUSSION

					Repeatability (% RSD)			
Analyte	R ²	MLOD (ng ml ⁻¹)	MLOQ (ng mL ⁻¹)	EFs	Intr	a-day	Inte	er-day
		(119 1112)	("g		1 ng mL ⁻¹	10 ng mL ⁻¹	1 ng mL ⁻¹	10 ng mL ⁻¹
Cortisol	0.9990	0.029	0.097	5.2 ± 0.2	4.2	6.1	10.0	6.3
Cortisone	0.9995	0.018	0.060	5.6 ± 0.3	5.0	1.8	9.6	8.7

• High levels of linearity, at least 20 ng mL⁻¹, were obtained for both compounds

Relative recoveries form spiked samples

Sample	Amount spiked	Amount for	und (ng mL ⁻¹)	Relative recovery (%)		
Sample	(ng mL ⁻¹)	Cortisol	Cortisone	Cortisol	Cortisone	
	0	2.0 ± 0.2	8.1 ± 0.7	-	-	
1	1	2.86 ± 0.03	9.04 ± 0.05	87 ± 3	94 ± 5	
•	5	6.41 ± 0.05	12.9 ± 0.6	88 ± 5	96 ± 12	
	10	11.7 ± 0.3	17.6 ± 0.3	97 ± 3	95 ± 3	
	0	1.03 ± 0.01	6.6 ± 0.5	-	-	
2	1	1.88 ± 0.06	7.61 ± 0.09	86 ± 6	96 ± 9	
2	5	5.5 ± 0.2	12.0 ± 0.7	89 ± 5	108 ± 13	
	10	10.7 ± 0.7	17.7 ± 0.5	97 ± 3	111 ± 5	
	0	1.55 ± 0.01	4.3 ± 0.3	-	-	
-	1	2.44 ± 0.07	5.32 ± 0.09	89 ± 7	99 ± 9	
3	5	6.0 ± 0.4	9.6 ± 0.5	89 ± 9	107 ± 11	
	10	12.1 ± 0.7	14.9 ± 0.2	106 ± 7	106 ± 2	


• 3 samples form 3 different volunteers were spiked at 3 levels of concentration in order to study the

Recoveries were obtained between 86 and 111 % for cortisol and cortisone showing no significant

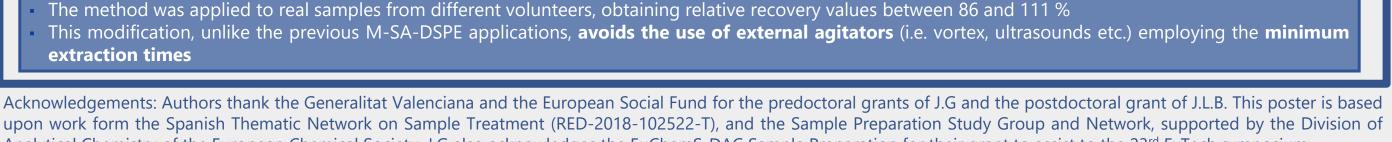
M-SA-DSPE was compared with other dispersive strategies (i.e. Vortex assisted-DSPE (VA-DSPE) and

ultrasounds assisted-DSPE (USA-DSPE)) showing higher extraction performance in saliva samples

M-SA-DSPE vs.VA-DSPE and USA-DSPE

Cortisone

Cortisol


Chromatogram from a saliva sample

CONCLUSIONS

matrix effect

relative recoveries (%)

- A modified M-SA-DESPE method has been developed and validated for the determination of cortisol and cortisone in saliva samples
- This method showed **good analytical features**: showing low LODs, good linearity and RSDs \leq 10 %

Analytical Chemistry of the European Chemical Society. J.G also acknowledges the EuChemS-DAC Sample Preparation for their grant to assist to the 23rd ExTech symposium.