

## **DEVELOPMENT OF DISPERSIVE LIQUID-SOLID MICROEXTRACTION: APPLICATION TO THE** DETERMINATION OF CORTISONE AND CORTISOL IN HUMAN SALIVA

José Grau\*, Alberto Chisvert\*, Juan Luis Benedé, Amparo Salvador

Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia (Spain)

\*e-mail: jose.grau-escribano@uv.es, alberto.chisvert@uv.es



| In this work, we introduce a new hybrid microextraction technique that combines dispersive liquid-<br>liquid microextraction (DLLME) and dispersive solid-phase extraction (DSPE) with magnetic<br>nanoparticles (MNPs), termed dispersive liquid-solid microextraction (DLSME)                                             | DLLME<br>+<br>DSPE<br>+<br>MNPs |           | DLSME<br>Mediated by<br>MNPs |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|------------------------------|
| In this new approach a magnetic material is dispersed into the liquid sample employing a disperser solvent. Later, using an external magnetic field, the sorbent is kept whereas the sample is retired with a syringe. Finally, the analytes are desorbed from the magnetic sorbent with a small volume of organic solvent. | Cortisone                       |           | Cortisol                     |
|                                                                                                                                                                                                                                                                                                                             |                                 | 11-β HSD1 |                              |

Cortisone and cortisol, widely used as biomarkers of Cushing's syndrome, stress and other diseases, were selected as model compounds for method development and optimization.







## **RESULTS AND DISCUSSION**

Figures of merit of the proposed method

Analysis of real samples

- Samples from 4 volunteers were studied
- High levels of linearity, that reached at least 20 ng mL<sup>-1</sup>, were obtained for both compounds
- Low **method limits of detection** (MLODs) and good values of **precision** (repeatability) and **enrichment factors** were achieved
- **Recoveries** were studied employing an artificial saliva sample: results did not show significant matrix effect

|           | MLOD<br>(ng L <sup>-1</sup> ) | EF        | <b>R</b> <sup>2</sup> - | Repeatability (% RSD) |                        |                       | <b>Recoveries</b> %    |                       |                        |
|-----------|-------------------------------|-----------|-------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|
|           |                               |           |                         | Intra-day             |                        | Inter-day             |                        |                       |                        |
|           |                               |           |                         | 1 ng mL <sup>-1</sup> | 10 ng mL <sup>-1</sup> | 1 ng mL <sup>-1</sup> | 10 ng mL <sup>-1</sup> | 1 ng mL <sup>-1</sup> | 10 ng mL <sup>-1</sup> |
| Cortisone | 19.3                          | 9.5 ± 0.5 | 0.9995                  | 5.0                   | 1.8                    | 9.6                   | 8.7                    | 97 ± 9                | 105 ± 7                |
| Cortisol  | 33.2                          | 8.6 ± 0.5 | 0.9990                  | 4.2                   | 6.1                    | 10.6                  | 6.3                    | 98 ± 8                | 105 ± 5                |

### CONCLUSIONS

- This new approach allows faster determination employing small amounts of sample, organic solvents and composite with the minimum sample treatment. Any supporting equipment (vortex, centrifuge, ultrasounds...) is not necessary neither
- The proposed method provides good analytical features and allows the determination of cortisone and cortisol in saliva samples

**11-**β HSD2

Different amounts of cortisol (between 0.48-2.20) ng mL<sup>-1</sup>)and cortisone (3.8-10.0 ng mL<sup>-1</sup>) were found

|                         |                 | Volunteer 2<br>(ng mL <sup>-1</sup> ) |               |                |
|-------------------------|-----------------|---------------------------------------|---------------|----------------|
| Cortisone               | $3.8 \pm 0.2$   | $4.2 \pm 0.3$                         | $7.5 \pm 0.4$ | $10.0 \pm 0.2$ |
| Cortisol                | $0.54 \pm 0.03$ | $0.48 \pm 0.04$                       | 1.81 ± 0.11   | 2.20 ± 0.07    |
| <b>400</b> <sub>7</sub> |                 |                                       |               |                |



Chromatogram obtained by applying DLSME to a real saliva sample

#### Acknowledgements: J.G. thanks the Generalitat Valenciana and the European Social Fund for his predoctoral grant and acknowledges the Spanish Society of Analytical Chemistry

#### (SEQA) for his grant to assit to their 22nd meeting

**European Union European Social Fund** Investing in your future

\*\*\*\*



# Consulta otras comunicaciones presentadas por el GICAPC en la XXII **Reunión de la Sociedad Española de Química Analítica:**

Determination of nitro musks in environmental waters by stir bar sorptive dispersive microextraction followed by thermal desorption-gas chromatography-mass spectrometry. J.L. Benedé, A. Chisvert, A. Salvador. Flash Communication. Ver comunicación.

Stir bar sorptive-dispersive microextraction mediated by a magnetic

nanoparticles-metal organic framework composite for the determination of *n-nitrosamines in cosmetic products*. P. Miralles, I. Van Gemert, A. Chisvert, A. Salvador. Flash Communication. Ver comunicación.

Development of an analytical method for the determination of acrylamide in cosmetic products based on dispersive liquid-liquid microextraction. L. Schettino, J.L. Benedé, A. Chisvert, A. Salvador. Flash Communication. Ver comunicación.

Determination of hydroxylated ingredients with preservative activity in cosmetic products by gas chromatography-mass spectrometry. C. Azorín, J.L. Benedé, A. Chisvert, A. Salvador. Ver comunicación.

A green analytical method for the determination of hydroxyethoxyphenyl butanone in cosmetic products. P. Miralles, J.L. Benedé, A. Mata-Martín, A. Chisvert, A. Salvador. Ver comunicación.

Determination of polycyclic aromatic hydrocarbons in cosmetics by stir bar sorptive dispersive microextraction and gas chromatography-mass spectrometry. Vállez-Gomis, J. Grau, J.L. Benedé, A. Chisvert, A. Salvador. Ver comunicación.

Reversed-phase dispersive liquid-liquid microextraction prior to liquid chromatography-tandem mass spectrometry for the determination of acrylamide in cosmetic products. L. Fernández, J.L. Benedé, A. Chisvert, A. Salvador. Ver comunicación.

Development of dispersive liquid-solid microextraction: application to the determination of cortisone and cortisol in human saliva. J. Grau, J.L. Benedé, A. Chisvert, A. Salvador. Ver comunicación.